Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-2244595

ABSTRACT

The fate of a viral infection in the host begins with various types of cellular responses, such as abortive, productive, latent, and destructive infections. Apoptosis, necroptosis, and pyroptosis are the three major types of regulated cell death mechanisms that play critical roles in viral infection response. Cell shrinkage, nuclear condensation, bleb formation, and retained membrane integrity are all signs of osmotic imbalance-driven cytoplasmic swelling and early membrane damage in necroptosis and pyroptosis. Caspase-driven apoptotic cell demise is considered in many circumstances as an anti-inflammatory, and some pathogens hijack the cell death signaling routes to initiate a targeted attack against the host. In this review, the selected mechanisms by which viruses interfere with cell death were discussed in-depth and were illustrated by compiling the general principles and cellular signaling mechanisms of virus-host-specific molecule interactions.


Subject(s)
Regulated Cell Death , Virus Diseases , Viruses , Apoptosis , Humans , Necroptosis , Pyroptosis/physiology , Viruses/metabolism
2.
OMICS ; 25(7): 408-416, 2021 07.
Article in English | MEDLINE | ID: covidwho-1287972

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is anticipated to transition to an endemic state as vaccines are providing relief in some, but not all, countries. Drug discovery for COVID-19 can offer another tool in the fight against the pandemic. Additionally, COVID-19 impacts multiple organs that call for a systems medicine approach to planetary health and therapeutics innovation. In this context, innovation for drugs that prevent and treat COVID-19 is timely and much needed. As the virus variants emerge under different ecological conditions and contexts in the long haul, a broad array of vaccine and drug options will be necessary. This expert review article argues for a need to expand the COVID-19 interventions, including and beyond vaccines, to stimulate discovery and development of novel medicines against SARS-CoV-2 infection. The Renin-Angiotensin-Aldosterone System (RAAS) is known to play a major role in SARS-CoV-2 infection. Neprilysin (NEP) and angiotensin-converting enzyme (ACE) have emerged as the pharmaceutical targets of interest in the search for therapeutic interventions against COVID-19. While the NEP/ACE inhibitors offer promise for repurposing against COVID-19, they may display a multitude of effects in different organ systems, some beneficial, and others adverse, in modulating the inflammation responses in the course of COVID-19. This expert review offers an analysis and discussion to deepen our present understanding of the pathophysiological function of neprilysin in multiple organs, and the possible effects of NEP inhibitor-induced inflammatory responses in COVID-19-infected patients.


Subject(s)
Neprilysin/chemistry , Bradykinin/genetics , Bradykinin/metabolism , Renin-Angiotensin System/genetics , Renin-Angiotensin System/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL